Logarithmically homogeneous preferences

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Logarithmically Benford Sequences

Abstract. Let I ⊂ N be an infinite subset, and let {ai}i∈I be a sequence of nonzero real numbers indexed by I such that there exist positive constants m,C1 for which |ai| ≤ C1 · i for all i ∈ I. Furthermore, let ci ∈ [−1, 1] be defined by ci = ai C1·i for each i ∈ I, and suppose the ci’s are equidistributed in [−1, 1] with respect to a continuous, symmetric probability measure μ. In this paper,...

متن کامل

A class of logarithmically completely monotonic functions

The main object of this work is to give some conditions for a class of functions to be logarithmically completely monotonic. Our result is shown to be an extension of a result which was proven in the recent literature on this subject. c © 2008 Elsevier Ltd. All rights reserved.

متن کامل

Randomly coloring graphs of logarithmically bounded pathwidth

We consider the problem of sampling a proper k-coloring of a graph of maximal degree ∆ uniformly at random. We describe a new Markov chain for sampling colorings, and show that it mixes rapidly on graphs of logarithmically bounded pathwidth if k ≥ (1+ )∆, for any > 0, using a new hybrid paths argument. ∗California Institute of Technology, Pasadena, CA, 91125, USA. E-mail: [email protected].

متن کامل

Logarithmically Slow Coarsening in Nonrandomly Frustrated Models

We study the growth ("coarsening") of domains following a quench in an Ising model with weak next nearest-neighbor antiferromagnetic (AFM) bonds and single-spin-flip dynamics. The AFM bonds introduce free energy barriers to coarsening and thus greatly slow the dynamics. In three dimensions, simple physical arguments suggest that the barriers are proportional to the characteristic length scale L...

متن کامل

Logarithmically small minors and topological minors

For every integer t there is a smallest real number c(t) such that any graph with average degree at least c(t) must contain a Kt-minor (proved by Mader). Improving on results of Shapira and Sudakov, we prove the conjecture of Fiorini, Joret, Theis and Wood that any graph with n vertices and average degree at least c(t) + ε must contain a Kt-minor consisting of at most C(ε, t) logn vertices. Mad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Economics

سال: 2016

ISSN: 0304-4068

DOI: 10.1016/j.jmateco.2016.08.005